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In brief

Self-initiated actions in freely moving rats

can be predicted by specific ensemble

activity patterns in the secondary motor

cortex (M2). Variability in action timing

can be explained by metastable

attractors in a network model of M2.

Transitions between attractors are

generated by low-dimensional correlated

variability, empirically verified in M2.
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SUMMARY

The timing of self-initiated actions shows large variability even when they are executed in stable, well-learned
sequences. Could this mix of reliability and stochasticity arise within the same neural circuit? We trained rats
to perform a stereotyped sequence of self-initiated actions and recorded neural ensemble activity in second-
ary motor cortex (M2), which is known to reflect trial-by-trial action-timing fluctuations. Using hidden Markov
models, we established a dictionary between activity patterns and actions. We then showed that metastable
attractors, representing activity patterns with a reliable sequential structure and large transition timing
variability, could be produced by reciprocally coupling a high-dimensional recurrent network and a low-
dimensional feedforward one. Transitions between attractors relied on correlated variability in this meso-
scale feedback loop, predicting a specific structure of low-dimensional correlations that were empirically
verified in M2 recordings. Our results suggest a novel mesoscale network motif based on correlated vari-
ability supporting naturalistic animal behavior.

INTRODUCTION

When interacting with a complex environment, animals generate

naturalistic behavior in the form of self-initiated action se-

quences, originating from the interplay between external cues

and the internal dynamics of the animal. Self-initiated behavior

exhibits variability both in its temporal dimension (when to act)

and in its spatial features (which actions to choose, in which or-

der) (Berman et al., 2016; Wiltschko et al., 2015; Markowitz et al.,

2018). Large trial-to-trial variability has been observed in action

timing, where transitions between consecutive actions are well

described by a Poisson process (Killeen and Fetterman, 1988).

Recent studies inC. elegans (Linderman et al., 2019), Drosophila

(Berman et al., 2016), and rodents (Wiltschko et al., 2015; Marko-

witz et al., 2018) demonstrated that the spatiotemporal dy-

namics of self-initiated action sequences can be captured by

state space models, based on an underlying Markov process.

These analyses revealed a repertoire of behavioral motifs typi-

cally numbering in the hundreds, leading to a combinatorial

explosion in the number of action sequences. Such a large

behavioral landscape poses a formidable challenge for investi-

gating the neural underpinnings of behavioral variability. A prom-

ising approach to tame the curse of dimensionality is to reduce

the lexical variability in the behavioral repertoire, by using a

task in which the set of actions is rewarded when executed in

a fixed order, yet retaining variability in action timing (Murakami

et al., 2014, 2017), a hallmark of self-initiated behavior (Killeen

and Fetterman, 1988).

Previous studies in rodents have identified the secondary mo-

tor cortex (M2) as part of a distributed network involved in motor

planning, working memory (Li et al., 2016), and self-initiated

tasks (Murakami et al., 2014, 2017). During delay periods in de-

cision-making tasks, trial-averaged population activity in M2

displays clear features of attractor dynamics, with two discrete

attractors encoding the animal’s upcoming choice (Inagaki

et al., 2019). Are attractor dynamics in M2 confined to delay

period activity? Here, we investigate the hypothesis that attrac-

tor dynamics can capture the activity of M2 neural circuits in a

more naturalistic behavioral setting in which a freely moving an-

imal performs sequences of self-initiated behavior. In particular,

we sought to uncover a correspondence between M2 neural ac-

tivity patterns and upcoming self-initiated actions.

Because self-initiated action sequences are characterized by

large trial-to-trial temporal variability in transition timing, they

cannot be directly aligned across trials without the use of time-

warping methods, hampering the applicability of traditional
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trial-averaged measures of neural activity. A principled frame-

work to tackle this issue is to model single-trial neural population

dynamics using hidden Markov models (HMMs) (Rabiner, 1989).

These state space models can identify hidden states from pop-

ulation activity patterns in single trials and have been success-

fully deployed in a variety of tasks and species from C. elegans

(Linderman et al., 2019) to rodents (Jones et al., 2007; Mazzu-

cato et al., 2015; Maboudi et al., 2018; La Camera et al., 2019),

primates (Gat and Tishby, 1993; Abeles et al., 1995; Ponce-Al-

varez et al., 2012; Engel et al., 2016), and humans (Baldassano

et al., 2017; Taghia et al., 2018). HMMs segment single-trial pop-

ulation activity into sequences in an unsupervised manner by

inferring hidden states from multi-neuron firing patterns. Within

each pattern, neurons fire at an approximately constant firing

rate for intervals typically lasting hundreds of milliseconds.

Previous work showed that the activity patterns, revealed by

HMMs, can be interpreted as metastable attractors, arising

from recurrent dynamics in local cortical circuits (Miller and

Katz, 2010; Mazzucato et al., 2015). Metastable attractors are

produced in biologically plausible network models (Deco and

Hugues, 2012; Litwin-Kumar and Doiron, 2012) and have been

used to elucidate features of sensory processing (Miller and

Katz, 2010; Mazzucato et al., 2015), working memory (Amit

and Brunel, 1997), and expectation (Mazzucato et al., 2019)

and to explain state-dependent modulations of neural variability

(Deco and Hugues, 2012; Litwin-Kumar and Doiron, 2012; Maz-

zucato et al., 2016). However, although previous models are

capable of generating sequential activity (Sompolinsky and

Kanter, 1986; Kleinfeld, 1986; Miller and Katz, 2010; Pereira

and Brunel, 2020), they are hindered by a fundamental trade-

off between sequence reproducibility and trial-to-trial temporal

variability. Namely, they can endogenously generate either reli-

able sequences without temporal variability (Sompolinsky and

Kanter, 1986; Kleinfeld, 1986; Pereira and Brunel, 2020) or,

instead, sequences with large temporal variability but unreliable

order (Litwin-Kumar and Doiron, 2012; Mazzucato et al., 2015;

Treves, 2005). Thus, existing models are incapable of generating

reproducible sequences of metastable attractors, characterized

by large trial-to-trial variability in attractor dwell times.

Here, we addressed these issues in a waiting task (Murakami

et al., 2014, 2017) in which freely moving rats performed many

repetitions of a sequence of self-initiated actions leading to awa-

ter reward. The identity and order of actions in the sequence was

fixed by the task reward contingencies (i.e., producing out-of-

sequence actions yielded no rewards), yet action timing retained

large trial-to-trial variability (Murakami et al., 2014, 2017). We

found that M2 population activity during the task could be well

modeled by an HMM that established a dictionary between

self-initiated actions and neural patterns. To explain the neural

mechanism generating reproducible yet temporally variable se-

quences of patterns, we propose that transitions between at-

tractors are driven by low-dimensional correlated variability.

This can be produced by reciprocally connecting a high-dimen-

sional recurrent network and a low-dimensional feedforward

network. Attractors in the high-dimensional network represent

the neural patterns inferred fromM2population activity. Previous

experiments showed that recurrent circuits between cortical

areas such as M2 and subcortical areas such as thalamus

(Guo et al., 2018, 2017) and basal ganglia nuclei (Hélie et al.,

2015; Desmurget and Turner, 2010; Nakajima et al., 2019) are

necessary to sustain attractor dynamics and produce motor se-

quences, and we suggest that cortical-subcortical circuits might

correspond to our high- and low-dimensional network interac-

tion. This mechanistic model predicts a specific structure of

noise correlations (to be low dimensional and aligned between

consecutive states in the sequence of neural activations), which

we confirmed in the empirical data. Although previous work

showed that low-dimensional (differential) correlations in sen-

sory cortex may be detrimental for accurately encoding external

stimuli (Moreno-Bote et al., 2014), our results demonstrate that,

surprisingly, they are essential for a motor circuit to produce sta-

ble yet temporally variable self-initiated action sequences.

RESULTS

Ensemble activity in M2 unfolds through reliable pattern
sequences
To elucidate the circuit mechanism underlying self-initiated ac-

tions, we trained animals on a waiting task. In the waiting task,

freely moving rats were trained to perform a sequence of self-

initiated actions to obtain a water reward. Animals engaged in

the trial by inserting their snouts into a wait port, where, after a

400 ms delay, a first auditory tone signaled the beginning of

the waiting epoch. Two alternative options were made available:

(1) waiting for a second tone, delivered at random times, then

moving to the reward port to collect a large water amount

(henceforth referred to as ‘‘patient’’ trials), and (2) terminating

the trial at any moment before the second tone, then moving to

a reward port to collect a small amount of water (henceforth

referred to as ‘‘impatient’’ trials). In either case, rewards were

collected by withdrawing the snout from the wait port and poking

into the reward port; thus, patient and impatient trials shared the

same action sequence (Figure 1A). The intervals between

consecutive actions show large trial-to-trial variability with

right-skewed distributions (Figure 1B; Figure S1A), suggestive

of a potential stochastic mechanism underlying their action

timing (Killeen and Fetterman, 1988).

To uncover the neural correlates of self-initiated actions,we re-

cordedensemblespike trains from theM2 (fromN=6–20neurons

per session, 9.9 ± 3.6 on average across 33 recorded sessions) of

rats engaged in thewaiting task (Murakami et al., 2014, 2017).We

found that single-trial ensemble neural activity in M2 consistently

unfolded through reliable sequences of hidden or latent neural

patterns, inferred using a HMM (Figure 1C; Figure S2). This latent

variable model posits that ensemble activity in a given time bin is

determined (and emitted) by one of a few unobservable latent ac-

tivity patterns, represented by a vector of ensemble firing rates

(depicted column-wise in the ‘‘emission matrix’’). In the next

time bin, the ensemble may either dwell in the current pattern or

transition to a different pattern, with probabilities given by rows

of the ‘‘transition matrix.’’ Stochastic transitions between pat-

terns occur at random times according to an underlying Markov

chain (i.e., transitions solely depend on the current pattern), and

neurons discharge as Poisson processes with pattern-depen-

dent firing rates. The number of patterns in each session was

selected using an unsupervised cross-validation procedure
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(10.2 ± 0.6 across 33 sessions, which ranged from 6 to 22 pat-

terns; Figure S2A; STAR Methods) and did not depend on

ensemble size (FigureS2B). The identity andorder of inferredpat-

terns were remarkably consistent within each session, even

across patient and impatient trials. Figure 1D shows five example

raster plots in which the sequence of states unfolds through the

trial, while Figure 1E shows the sequence of states in all the trials

of the same session (Figure S3). The average pattern dwell time

was 0.52 ± 0.13 s (mean ± SD across all sessions; dwell time

was defined as intervals in which the HMM posterior probability

A D

E

B

C F

Figure 1. Waiting task and M2 pattern sequences

(A) Schematic of task events. A rat self-initiated thewaiting task by poking into await port (poke in [PI]), where tone 1was played (after 400ms), and after a variable

delay, a different tone (tone 2) was played. The animal could decide to poke out [PO] of the wait port at any time (after tone 2 in patient trials, between tones 1 and 2

in impatient trials) and move to the reward port (water poke in [WPI]) to receive a water reward (large and small for patient and impatient trials, respectively).

Bottom: schedule of trial events. Three events (PI, PO, WPI) are triggered by self-initiated actions with respective interevents interval highlighted.

(B)Waiting behavior in a representative session. Tickmarks represent event times (see legend). Vertical bars indicate waiting times for poke out and water poke in

(yellow and cyan, respectively). When the red tick (second tone) is not present, that marks an impatient trial. Inset: interevent interval distribution for self-initiated

actions ([PO � PI] and [WPI � PO], yellow and cyan, respectively).

(C) Neural pattern inference via hidden Markov model (HMM). An HMM (left, schematics) is fit to a representative session in (D), returning a set of neural patterns

(emission matrix, center) and a transition probability matrix (TPM; right). Each pattern is a population firing rate vector (columns in the emission matrix). The TPM

returns the probability for a transition between two patterns to occur.

(D) Representative trials from one ensemble of 12 simultaneously recordedM2 neurons during patient (top and bottom left) and impatient (bottom right) trials. Top:

spike rasters with latent patterns extracted via HMM (colored curves represent pattern posterior probability; colored areas indicate intervals where a pattern was

detected with probability exceeding 80%).

(E) All trials from the representative session (each row corresponds to a trial). Individual trials have been time-stretched to align to five different events (1 s before

poke in, poke in, poke out, andwater poke in; 1 s after poke out). All trials display a stereotyped pattern sequence. Color-coded lines represent stretched intervals

where patterns were detected (same as colored intervals in D). Black tickmarks represent tone 2 onset in patient trials only, while impatient trials are displayed but

tone 2 is not reported.

(F) Left: histogram of pattern dwell times for all patterns across all trials in the representative session reveal right-skewed distributions (we excluded the first and

last pattern in the sequence, whose duration artificially depends on trial interval segmentation). Skewness and coefficient of variability (CV) of pattern dwell time

distributions reveal large trial-to-trial variability (33 sessions).
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was above 80%; STAR Methods; Figure 1F; median and inter-

quartile dwell time was 0.42 [0.36–0.49]), in agreement with pre-

vious findings in other cortical areas (Mazzucato et al., 2015).

Transition intervals between consecutive states lasted 0.14 ±

0.06 s, thus significantly shorter than state durations. Such long

dwell times, which are greater than typical single neuron time

constants, suggest that the observed patterns may be an emer-

gent property of the collective circuit dynamics within M2 and

reciprocally connected brain regions. Crucially, even though the

identity and order of patterns within a sequence were highly

consistent across trials, pattern dwell times showed large trial-

to-trial variability, characterized by right-skewed distributions

(Figure 1F; Figure S2C; coefficient of variability [CV] = 0.76 ±

0.10 and skewness 1.60 ± 0.46). This temporal heterogeneity

suggests that a stochastic mechanism may contribute to driving

transitions between consecutive patterns within a sequence.

Robustness of pattern inference
We performed a series of control analyses aimed at testing the

robustness of our pattern sequence model. We first examined

how much single-cell autocorrelation and pairwise correlations

contributed to the pattern sequence detection. To do so, first

we performed a cross-validation analysis comparing the data

with two surrogate datasets (Figure 2A) (Maboudi et al., 2018).

In the ‘‘circular-shuffled’’ surrogate dataset, we circularly shifted

bins for each neuron within a trial (i.e., row-wise), thus destroying

pairwise correlations but preserving single-cell autocorrelations.

In the ‘‘swap-shuffled’’ surrogatedataset,we randomlypermuted

population activity across bins within a trial (i.e., column-wise),

thus preserving instantaneous pairwise correlations but destroy-

ing autocorrelations.We found that the cross-validated likelihood

of held-out trials for an HMM trained on the real dataset was

significantly larger compared with an HMM trained on surrogate

datasets (Figures S2F–S2H; empirical versus circular shuffled:

p = 6.5 3 10�7; versus swap shuffled: p = 5.4 3 10�7, signed-

rank test). When we destroyed autocorrelations, the model

entirely failed to detect pattern transitions, leaving only one

pattern (Figures 2B and 2C; p = 5.4 3 10�7). When destroying

pairwise correlations, the model still detected multiple patterns

whose number was in the same range as the model trained on

the empirical data (Figure 2C; p = 0.19). However, pattern detec-

tionwassignificantly lessconfident than inempirical data (Figures

2Band2C; p=3.2310�6);moreover, inferredpattern sequences

were significantly sparser and more similar across trials in the

data compared with the surrogate datasets (Figure 2C; p =

2.7 3 10�6; Figures S2D and S4). We concluded that single-cell

autocorrelations, but not pairwise correlations, played an impor-

tant role in extracting pattern sequences. Moreover, pattern se-

quences were not driven by the most active neuron in the

ensemble, but they are a robust collective property of the whole

ensemble dynamics (comparison of HMM fits with the empirical

data with surrogate datasets obtained by removing neurons

with the highest activity revealed no significant differences; Fig-

ures S4B–S4F).

In additional control analyses, we found that the observed

neural pattern sequences reflected an underlying discrete pro-

cess and were not an artifact of the HMM inference. A Gaussian

process factor analysis (GPFA; Figure S5; STARMethods) (Engel

et al., 2016; Byron et al., 2008; Churchland and Abbott, 2012) re-

vealed abrupt transitions in the time course of GPFA latent fac-

tors separating long and approximately constant epochs with

long-tailed dwell time distributions (Figure S5), closely matching

A B

C

Figure 2. Robustness of pattern inference

(A) Schematic of shuffled procedure to create surrogate datasets: circular shuffle (left) preserved single-cell autocorrelations and destroyed pairwise correlations;

swap shuffle (right) preserved pairwise correlations and destroyed autocorrelations.

(B) Representative trial showing detection confidence measure (same color-coded notation as in Figure 1; black and gray bars, fraction of trial duration during

which patterns were detected with probability larger or smaller than 80%, respectively.

(C) HMM robustness analyses. Left: average number of patterns in each trial for empirical and surrogate datasets. Center: pattern detection confidence, esti-

mated as fraction of time across all trials where patterns were detected with probability exceeding 80%. Right: consistence of pattern sequence, estimated as

Pearson correlation coefficients between single-trial estimates of ‘‘symbolic’’ TPMs encoding the sequence identity (see STAR Methods).

In (A)–(C), signed-rank tests between empirical and shuffled datasets: *p < 0.05, **p < 0.01, and ***p < 0.001.
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the discrete HMM state sequences, and a strong bimodality of

GPFA latent factors, consistent with underlying discrete states

(Engel et al., 2016).

Patterns arise from dense and distributed neural
representations
Howdopattern sequences emerge fromneural activity? Patterns

formedseparate clusters tiling population activity space,with be-

tween-cluster distances being significantly larger than within-

cluster distances (Figure 3A; p < 10�20, Wilcoxon rank-sum

test). Most neurons were active in several patterns, leading to

dense neural representations, where overlaps between patterns

(0.41 ± 0.22, defined as Pearson correlation between firing rate

vectors) were significantly larger than expected solely on the ba-

sis of the underlying firing rate distribution (Figure 3B; p = 3 3

10�18, t test). We found that the vast majority of neurons

(88% ± 2%) had firing rates significantly modulated across pat-

terns (Figure 3C). Although 12%±2%of neuronswere notmodu-

lated and 14%±2%had two different firing rates across patterns

(bistable neurons), we found that 74% ± 2% of neurons were

‘‘multistable,’’ namely, they attained three or more firing rates

across all patterns, in agreement with previous findings (Mazzu-

cato et al., 2015). In particular, neurons attained on average

3.22 ± 1.17 different firing rates across patterns underscoring a

distributed code of neural patterns across the neural population

(Figure 3C; Figure S2I). Suchmultistability wasmore pronounced

in the empirical data compared with the circular- and swap-shuf-

fled datasets (Figure S4A; Kolmogorov-Smirnov test: empirical

versus circular shuffle, p = 5.9 3 10�6; empirical versus circular

shuffle, p = 1.43 10�33), suggesting that multistability is a prop-

erty of ensemble dynamics beyond single-neuron autocorrela-

tions and pairwise correlations. Furthermore, we found no linear

A

C

B

Figure 3. Dense and distributed population code in M2

(A) Neural patterns cluster in principal-component space (all trials from the representative session in Figure 1; color-coded dots represent patterns in single trials;

one representative trial smoothed trajectory obtained by averaging neural activity in a sliding window of 600 ms; arrows show events onsets along trajectory).

Inset: distribution of within- and across-cluster distances between patterns (p < 2.0 3 10�7, rank-sum test). Colors of different patterns are consistent with

previous and following figures where the same example session is analyzed.

(B) Pearson correlation matrix between patterns reveals significantly larger overlaps in the empirical data (top left: representative session) compared with those

found when drawing random patterns from the empirical firing rate distribution (bottom right). In this case, the average firing rate of individual neurons in each

pattern and trial was randomly drawn from the firing rate distribution of all neurons across all patterns in the same trial. Inset: distribution of pattern correlations for

empirical (blue) versus shuffled datasets (red).

(C) Single-neuron firing rates are modulated by pattern sequences. Left: cumulative firing rate distributions conditioned on patterns (color-coded as in A and

Figure 1D) for two neurons from the representative ensemble, revealing three and six significantly different firing rates across patterns, respectively (see STAR

Methods and Figure S2I). Right: number of different firing rates per neuron revealed multistable dynamics where 87% ± 2% of neurons had activities modulated

by patterns. Error bars represent the standard error.
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dependence between a single-cell multistability property and its

average firing rate (Pearson correlation,R2 = 0.11, p = 0.20), thus

suggesting that multistability is unrelated to a cell’s average firing

rate. We concluded that most M2 neurons participated in the

pattern sequences, suggesting that M2 neural populations can

support dense and distributed representations characterized by

mixed selectivity to several patterns.

Pattern onsets predict self-initiated actions
What kind of information about self-initiated behavior can be

decoded from M2 pattern sequences? The statistical struc-

tures of neural patterns and action sequences shared remark-

able similarities: single-trial consistency of identity and order

of actions/patterns within a session, yet right-skewed distribu-

tions of timing intervals across trials (Figure 1E; Figure S3). We

thus hypothesized that the onset of specific neural patterns

could be causally involved with and therefore predictive of

the timing and identity of upcoming self-initiated actions.

To test this hypothesis, we aimed to establish a cross-vali-

dated dictionary between actions and neural patterns, which

we did by tagging the onset of specific patterns with the actions

theymost strongly predicted (Figure 4A). This automated tagging

method showed that even though both pattern onsets and ac-

tions occurred at highly variable times in different trials, action

onset times were reliably preceded by specific patterns onset

on a sub-second scale (�99 ms [�293 to 28 ms], median

A

B

C

Figure 4. Predicting self-initiated actions from neural pattern onsets

(A) Schematic of pattern/action dictionary. Left: for each action in a correct trial (left: representative trial from Figure 1D), pattern onsets are aligned to that action

(poke in in this example). The pattern whose median onset occurs within an interval Dwin = ½ �0:5; 0:1� s aligned to the action, and whose distribution has the

smallest dispersion, is tagged to that action (color-coded curves are distributions of action-aligned pattern onsets from all correct trials in the representative

session in Figure 1).

(B) In incorrect trials (55 trials from the same representative session; time t = 0 aligned to poke in), the same patterns as in correct trials are detected (cf. Figure 1E),

but they concatenate in different sequences.

(C) Predicting self-initiated actions from pattern onsets. Left panel: in correct trials (split into training and test sets), using a pattern-action dictionary established

on the training set (procedure in A), action onsets are predicted on test trials (confusionmatrix: cross-validated prediction accuracy averaged across 33 sessions;

hits: correct action predicted within an interval of [�0.1, 0.5] s aligned to pattern onset). Right panel: in incorrect trials, actions onsets are predicted on the basis of

the cross-validated dictionary established in correct trials.
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Figure 5. Attractor model of pattern sequences

(A) Distribution of empirical single-cell current-to-rate transfer functions fi inferred from the data (328 neurons from 33 sessions), used as transfer functions in the

recurrent network model (see STAR Methods).

(B) The correlated variabilitymodel (Correlated variability originates in amesoscale feedback loop) generates reliable sequences of long-lived attractors with large

trial-to-trial variability in attractor dwell times (representative trials: rows represent the activity of 12 neurons randomly sampled from the network; color-coded

curves represent time course of overlaps [see Equation 12] between population activity and each attractor; detected attractors are color-shaded).

(C) Histogram of attractor dwell times across trials in the representative network of (B) reveals right-skewed distributions (left, we excluded the first and last

patterns in the sequence, whose duration artificially depends on trial interval segmentation). Skewness (center) and coefficient of variability (CV; right) of pattern

dwell time distributions reveal large trial-to-trial variability (33 simulated networks). The same plots, generated by means of states individuated in the model via a

HMM fit on the model simulated neural traces, are shown in Figure S9A.

(D) Single-neuron firing rates aremodulated by pattern sequences in themodel. Cumulative firing rate distributions conditioned on attractors (color-coded as in B)

for two representative neurons in the model, revealing two and three significantly different firing rates across attractors, respectively (see STAR Methods). Inset:

number of different firing rates per neuron revealed multistable dynamics where 99% ± 1% of neurons had activities modulated by patterns.

(legend continued on next page)
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[interquartile interval] between pattern onset and tagged action).

In correct trials, defined as those in which a visit to the waiting

port was followed directly by a movement to the reward port

(both patient and impatient types, 67% ± 16% fraction of trials

per session; Figure 1A), the cross-validated accuracy of predict-

ing actions from neural patterns was very high (Figure 4C). Trials

with other action sequences, in which the animal behaved errat-

ically, were deemed as incorrect trials (Figure 4C; Figure S6).

To assess the significance of the action/pattern dictionary, we

aimed at testing whether pattern onsets could correctly predict

actions performed during incorrect trials (32.5% ± 15.8%; Fig-

ure 4B; Figure S6), on the basis of the dictionary learned solely

from correct trials. Pattern sequences in correct trials were

more correlated (0.520 ± 0.108, mean ± SD Pearson correlation

across sessions) than in incorrect trials (0.398 ± 0.076; p < 10�5, t

test). The correlation between sequences in correct trials and

those in incorrect trials (0.395 ± 0.096) was similar to the corre-

lation found in incorrect trials (p = 0.88, t test). This is consistent

with the fact that correct (Figure 1E) and incorrect trials (Fig-

ure 4B) both begin with a poke in/poke out and then start

diverging. Nevertheless, when using the cross-validated ac-

tion/pattern dictionary learned on correct trials, we were able

to correctly predict which actions the animal would perform in

incorrect trials (Figures 4B and 4C).

Perhaps surprisingly, we found that single neurons in M2 were

not responsive to sensory stimuli (auditory tones 1 and 2: 6 and 4

responsive neurons across 328 neurons). Moreover, it was not

possible to discriminate patient versus impatient conditions

frommodulations of population firing rates (from a decoding anal-

ysis; Figure S6F) nor from the distribution of pattern dwell times (p

> 0.05 in 95%of the sessions, Kolmogorov-Smirnov test), reflect-

ing the consistency of action timing distributions between the two

conditions (p > 0.05 in 95% of the sessions). These results are

consistent with the hypothesis that M2 neural activity reliably en-

codes for the animal’s actions, regardless of whether these ac-

tions are performed in a patient or impatient trial. Indeed, both

conditions involved the same action sequence, encoded in a reli-

able neural pattern sequence occurring in both condition. These

results suggest that M2 activity mostly reflected stochasticity in

action timing from trial to trial, regardless of whether a trial was

classified as patient or impatient. We thus concluded that the

spatiotemporal variability observed in M2 population activity in

single trials is consistent with a mechanism whereby specific

pattern onsets anticipate self-initiated actions.

Correlated variability generates sequences of
metastable attractors
What is a possible circuit mechanism underlying the observed

pattern sequences? We aimed to capture three main features

of the empirical data: (1) long-lived neural patterns (0.5 s on

average; Figure 1F), suggesting that they originate from attractor

dynamics; (2) right-skewed pattern dwell time distributions

(Figure 1F), suggesting that transitions may be noise driven

(see, e.g., Gardiner, 1985); and (3) highly reliable sequences

across trials (Figure 1E; Figure S3). We thus sought a mecha-

nistic model generating reliable sequences of long-lived attrac-

tors with noise-driven transitions between attractors.

The crucial ingredient driving transitions between patterns in

the model entails constraining population activity fluctuations

along a low-dimensional manifold within a high-dimensional ac-

tivity space. We achieved this by embedding a low-rank term in

the synaptic couplings.

We modeled population activity in M2 as arising from a recur-

rent network of rate units governed by the following dynamics:

t _uiðtÞ = � uiðtÞ+
XN
j =1

JSij fjðujðtÞÞ+ zðtÞ
XN
j = 1

JFij fðujðtÞÞ;

(Equation 1)

where ui and fiðuiÞ are post-synaptic currents and single-neuron

current-to-rate transfer functions representing the activity of M2

neurons (fit to the empirical data in M2; Figure 5A; Figure S7). We

hypothesized that patterns originated from p discrete attractors

hm, for m = 1;.;p, stored in the symmetric synaptic couplings

JSijf
Pp

m= 1f ½h
m
i �g½h

m
j � (f and g are threshold functions; STAR

Methods; Pereira and Brunel, 2018), consistent with experi-

mental evidence supporting discrete attractor dynamics in M2

(Schmitt et al., 2017; Guo et al., 2017; Inagaki et al., 2019).

Because we sought to generate transitions stochastically, the

model operates in a regime where the attractors hm were stable

in the absence of the second term JF (Figure S7C). Transitions

between attractors, giving rise to sequences, originate from

the asymmetric term JFijf
Pp

m= 1f ½h
m+ 1
i �g½hmj � in Equation 1, hence-

forth referred to as the correlated variability term. This term gen-

erates stochastic dynamics via the noise zðtÞ. We will discuss

below the mechanistic origin of this term.

The correlated variability term constrains population activity

fluctuations ontoa low-dimensionalmanifoldwithin activity space,

whose dimension is bounded by the number p of attractors, thus

much smaller than the number of neurons N. The effect of this

term is to generate population activity fluctuations that are corre-

lated across neurons. Within a large range of parameters (Fig-

ure S7D), the network model met all our objectives: (1) long-lived

attractors matching the empirical data (average dwell time in Fig-

ure 5B fit to the representative session in Figure 1) emerging

from the network’s collective dynamics; (2) right-skewed dwell

time distributions (Figure 5C); and (3) highly reliable attractor se-

quences (in �4% of trials, the model generates the wrong

sequence of patterns, reminiscent of the incorrect trials in the

empirical data). As attractors would be stable in the absence of

noise zðtÞ (Figure S7C), transitions between attractors were

entirely noise driven in this model.

(E) Two-area model schematic. Fluctuations in the synaptic efficacy depend only on the pre-synaptic terminals at area Y (see Equation 17) and therefore on the

fluctuations on the synaptic efficacy of the Y/M2 synapses.

(F) Three example trials of the two-area model dynamics. As our analytical calculations predict, it produces meta-stable attractor dynamics that quantitatively

match our phenomenological model and the data (dwell times distribution not shown). Parameters are the same as in Table 1. The additional parameters take

values NY = 1000, AY)M2 = 0:12, and AM2)Y = 1. Area Y’s input-output transfer function is the rectifier linear function fðxÞ = ½x � 1�+ .
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Furthermore, we found that single-neuron firing rate distribu-

tions were heterogeneous (Figure 5D), similar to the empirical

ones (Figure 3C). In particular, most neurons participated in

the sequential dynamics, attaining on average 3.8 ± 0.9

different firing rates across patterns, explaining the single-

neuron multistability properties observed in M2 neural data

(Figure 5C; see also Mazzucato et al., 2015). Compared with

traditional attractor models with sparse activations (Tsodyks

and Feigel’man, 1988), multistability was accompanied with a

more dense code (Figure S8). We conclude that metastable at-

tractor dynamics in our model captured the lexically stable yet

temporally variable features of pattern sequences observed in

the empirical data.

Correlated variability originates in a mesoscale
feedback loop
The crucial ingredient driving transitions between patterns in the

model (see Equation 1) entails restricting fluctuations along a

low-dimensional manifold within activity space. We achieved

this by embedding a low-rank noise term in the synaptic connec-

tivity architecture of the neural circuit. What is the circuit origin of

these couplings? We found that this low-rank structure naturally

arises from a two-area model, describing a feedback loop be-

tween a large recurrent circuit representing M2 and a small feed-

forward circuit (provisionally denoted as Y):

t _uiðtÞ = � uiðtÞ+
XN
j = 1

JSij fjðujðtÞÞ+
XNY

j = 1

WM2)Y
ij rj ; (Equation 2)

tY _ri = � ri +
XN
j = 1

WY)M2
ij fjðujÞ :

Here, ui represent the activity of M2 neurons (the same as in

Equation 1), and ri represent activities of neurons in area Y (see

model schematic in Figure 5E). The latter area is smaller (NY �
N) and faster (tY<t) and lacks recurrent couplings, suggesting

that it may correspond to a subcortical circuit. The asymmetric

term JF in Equation 1, which generates stochastic transitions be-

tween otherwise stable attractors, originates from the reciprocal

couplingsWY)M2 andWM2)Y between M2 and area Y in Equa-

tion 2, its temporal dependence arising from fluctuations in the

synaptic efficacy of the Y/M2 synapses (STAR Methods; Fig-

ure 5E). The reciprocal connections WY)M2 and WM2)Y in this

two-area model can be integrated out when dynamics in area Y

are faster than in M2 (tY<t) (Reinhold et al., 2015; Jaramillo

et al., 2019). The two-area mesoscale attractor network

(2AMAN) model in Equation 2 is then mathematically equivalent

to the effective dynamics in Equation 1, whose recurrent cou-

plings are augmented to include an asymmetric term, JF , in-

herited from the reciprocal loop. In the STAR Methods we show

how the mean and variance of the noise term zðtÞ in Equation 1

capture, respectively, the strength and the variability of the cou-

plings in the feedback loop between M2 and area Y. Its time

dependence arises from fluctuations in the synaptic efficacy

assuming area Y is small. This variability in the synaptic efficacy

may emerge fromdifferent but not exclusive cellularmechanisms

such as short-term plasticity (Tsodyks et al., 1998) or stochastic

synaptic vesicle release (Dobrunz and Stevens, 1997). Network

simulations of our two-area model confirm our mathematical re-

sults (see Figure 5F).

Correlated variability is necessary to explain temporal
variability in attractor networks
Is it possible to generate the observed pattern sequences with

alternative mechanisms, in the absence of correlated variability?

We varied symmetric (JS) and asymmetric (JF ) synaptic coupling

strength but with no noise (zðtÞ = const in Equation 1), gener-

ating decaying activity, or stable attractors, or sequences of at-

tractors (Figure S7C). However, all these alternative models

failed to capture crucial aspects of the data. Namely, dwell

time distributions were short, and they showed no trial-to-trial

variability, thus being incompatible with the observed patterns

(Figure 1F).

We then attempted to rescue these models by driving the

network with increasing levels of private noise, namely, external

noise, independent for eachneuron (FigureS8D;STARMethods).

This led to small amounts of trial-to-trial variability in dwell times

but was still qualitatively different from the empirical data.

Increasing the private noise level beyond a critical value de-

stroyed sequential activity (Figure S8E).

We reasoned that the difficulty in generating long-lived, right-

skewed distributions of dwell times in this alternative class of

models was due to the fact that transitions were not driven by

noise but by the deterministic asymmetric term JF . Adding pri-

vate noise did not qualitatively change variability, because of

the high dimensionality of the stochastic component. Private

noise induces independent fluctuations in each neuron; howev-

er, in order to drive transitions from one attractor to the next one

within a sequence, these fluctuations must align along one spe-

cific direction in the N-dimensional space of activities. The prob-

ability that independent fluctuations align in a specific direction

vanishes in the limit of large networks, explaining why in the pri-

vate noise model transitions cannot be driven by noise. We thus

concluded that correlated variability, in the context of attractor

networks, was necessary to reproduce the right-skewed distri-

bution of pattern dwell time observed in the data.

Low-dimensional variability of M2 pattern sequences
Our recurrent network model (see Equation 1) entails a specific

hypothesis for the mechanism underlying the observed se-

quences: transitions between consecutive attractors are gener-

ated by correlated variability. We reasoned that if this was the

mechanism at play in driving sequences, then two clear predic-

tions should be borne out in the neural population data. First,

the correlated variability term in Equation 1 predicts that popula-

tion activity fluctuations within a given pattern (color-shaded

intervals in Figure 5B), henceforth referred to as ‘‘noise correla-

tions,’’ lie within a subspace whose dimension is much smaller

than that expected by chance (Figure 6A; dimensionality in the

model versus shuffled surrogate dataset; p < 10�15, rank-sum

test). Second, the sequential structure of the correlated variability

term in Equation 1 implies that noise correlation directions for at-

tractors that occur in consecutive orderwithin a sequence should

be co-aligned. A canonical correlation analysis (CCA) showed

that in the correlated variability model the alignment across
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attractor (measured using the top K principal components of the

noise correlations, whereK is its dimensionality) wasmuch larger

than expected by chance (Figure 6B; alignment in the model

versus shuffled surrogate dataset, p < 10�5, rank-sum test).

More specifically, we found that the strongest alignment

occurred between consecutive patterns within a sequence,

compared with those occurring further apart (Figure 6B; Fig-

ure S9; p < 10�20, rank-sum test).

Having established strong statistical features regarding low-

dimensional, aligned noise correlations, we tested whether the

structure of correlations predicted by the model was observed

in the M2 neural ensemble data. We defined noise correlations

in the empirical data as population activity fluctuations around

each neural pattern inferred from the HMM fit (Figure 6A).

Applying the same analyses to the data that were run on the

model, we found that indeed empirical noise correlations around

A

B

C

Figure 6. Low-dimensional variability in models and data

(A) Comparison of dimensionality of pattern-conditioned noise correlations in the data (blue) and the model (gray) reveals low-dimensional population activity

fluctuations, significantly smaller than expected by chance (red, shuffled datasets). In the shuffle dataset the firing rate of each neuron in each state and trial was

randomly sampled from the empirical distributions of firing rates for all states and trials in the same session. From left to right: first panel, representative session as

in Figure 1; second panel, summary across 33 sessions from the data and the model; third panel, fractional dimensionality in the data; fourth panel, model’s

fractional dimensionality estimated by matching ensemble sizes and number trials to data across 33 simulated sessions.

(B) Left panel: pattern-conditioned noise correlations are highly aligned between patterns in the data. Alignment between top canonical correlation vectors (blue,

data; gray, model) is larger than between random principal component directions (red) both in the data (middle panel) and in the model (right panel).

(C) Left panel: alignment of noise correlations between each pattern and patterns occurring at lag n in the sequence (e.g., n= 1 represents patterns immediately

preceding or following the reference pattern) in the model (gray) and in the data (blue). Pattern alignments are significantly larger for patterns at one lag compared

with patterns at longer lags both in the data (middle panel) and in the model (right panel). The shaded area corresponds to the standard error.

In all panels, *p < 0.05 and ***p < 0.001. The same plots in (A)–(C), generated by means of states individuated in the model via a HMM fit on the model’s simulated

neural traces, are shown in Figures S9B–S9D.
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each neural pattern had lower dimension than expected by

chance and closely matched the dimensionality predicted by

the model (Figure 6A). CCA further revealed that noise correla-

tions were highly aligned between patterns, significantly above

the alignment expected by chance (Figure 6B; p = 1.70 3

10�4, rank-sum test). Finally, directions of variability were more

aligned between consecutive patterns compared with patterns

further apart in the sequence (p < 10�14, rank-sum test; Fig-

ure 6C; Figure S9). Thus, the features of the noise correlations

in the neural ensemble data were strongly consistent with the

predictions from the correlated variability model.

DISCUSSION

Our results establish a correspondence between self-initiated

actions and discrete pattern sequences in M2. We found that

population activity in M2 during a self-initiated waiting task

unfolded through a sequence of patterns, with each pattern

reliably predicting the onset of upcoming actions. We inter-

preted the observed patterns as metastable attractors

emerging from the recurrent dynamics of a two-area neural

circuit. The model was capable of robustly generating reliable

sequences of metastable attractors recapitulating the proper-

ties of the dynamics found in the empirical behavioral and neu-

ral data. We propose a neural mechanism explaining the vari-

ability in attractor dwell times as originating from correlated

variability in a two-area model. The model predicts that popu-

lation activity fluctuations around each attractor (i.e., ‘‘noise

correlations’’) are highly aligned between attractors and con-

strained to lie on a low-dimensional subspace, and we

confirmed these predictions in the empirical neural (M2)

data. Our work establishes a mechanistic framework for inves-

tigating the neural underpinnings of self-initiated actions and

demonstrates a novel link between correlated variability and

attractor dynamics.

Evidence for discrete attractor dynamics in cortex
Attractors are characterized by long periods when neural en-

sembles discharge persistently at approximately constant

firing rate (defining a neural pattern) punctuated by relatively

abrupt transitions to a different relatively constant pattern. Ev-

idence for attractors was reported in temporal (Fuster and

Jervey, 1981; Miyashita, 1988) and frontal areas in primates

(Fuster and Alexander, 1971; Funahashi et al., 1989) and ro-

dents (Erlich et al., 2011; Schmitt et al., 2017; Guo et al.,

2017; Inagaki et al., 2019), and in rodent sensory cortex

(Jones et al., 2007; Ponce-Alvarez et al., 2012; Mazzucato

et al., 2015).

Experimental evidence for stimulus-driven sequences of

metastable attractors was previously found in primate frontal

areas (Gat and Tishby, 1993; Abeles et al., 1995; Seidemann

et al., 1996) and rodent sensory areas (Jones et al., 2007).

Random sequences were also observed during ongoing periods

(Mazzucato et al., 2015, 2016; Engel et al., 2016). In all those

cases, and consistent with our results, state dwell times showed

large trial-to-trial variability captured by Markovian dynamics

(i.e., right-skewed distributions), suggesting an underlying sto-

chastic process driving transitions (Miller and Katz, 2010; Maz-

zucato et al., 2015, 2019)(Wyrick and Mazzucato, 2021). A novel

feature of our results is that the reliable sequence of metastable

attractors is not driven by external stimuli but rather is internally

generated.

Neural circuits underlying pattern sequences
The main features of M2 ensemble activity explained by our

network models were the reliable identity and order of long-

lived neural patterns occurring in a sequence, and the large

trial-to-trial variability of pattern dwell times. Both features

can be robustly attained when transitions between attractors

arise from correlated variability. For an extended comparison

with other mechanistic models of attractor sequences, see

Table S1.

How does our 2AMAN model architecture map onto specific

neural circuits? Previous work showed, using inactivation exper-

iments, that the stochastic component in action timing variability

originated in M2 (Murakami et al., 2017). Our 2AMAN model re-

lies on a small and fast network lacking recurrent couplings, rep-

resenting a subcortical circuit connected to M2, such as the

areas that constitute its basal ganglia or thalamic nuclei, as sug-

gested by recent perturbation experiments (Guo et al., 2017;

Schmitt et al., 2017). Although a larger mesoscale network

may underlie sequence generation, including cortex, thalamus,

and basal ganglia (Kawai et al., 2015; Hélie et al., 2015; Desmur-

get and Turner, 2010; Nakajima et al., 2019; Markowitz et al.,

2018; Murray and Escola, 2017; Nakajima et al., 2019; Kao

et al., 2005) or a distributed mesoscale network (Svoboda and

Li, 2018).

A large amount of evidence implicated preparatory activity in

rodent M2, specifically the antero-lateral motor cortex, in action

and movement planning both in forced-choice tasks (Erlich

et al., 2011; Li et al., 2015; Chen et al., 2017; Sul et al., 2011;

Inagaki et al., 2019; Guo et al., 2014) as well as self-initiated

tasks (Murakami et al., 2014, 2017). The pattern sequences

we uncovered in M2 were consistent with the features of prepa-

ratory activity (Jin and Costa, 2015): a precise dictionary linked

specific patterns to actions, pattern onset reliably predicted ac-

tion onset, and action timing variability strongly correlated with

pattern onset variability.

Table 1. Network parameters

Model Parameters

Parameter Value Comment

c 0.1 connectivity sparsity

N 10,000 network size

qf 0.65 potentiation offset for f

xf 1.7 potentiation/depression threshold for f

xg 1.7 potentiation/depression threshold for g

AS 3 strength of the symmetric connectivity

z 0.65 mean of the synaptic noise

sz 0.65 SD of the synaptic noise

tz 20 ms synaptic noise time constant

sp 0 SD of the private noise

t 20 ms single neuron time constant
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Correlated variability in sensory versus motor
processing
Themain conceptual innovation in our 2AMANmodel is the intro-

duction of low-dimensional correlated variability driving reliable

sequences with variable timing. Similar ‘‘motor noise correla-

tions’’ have been recently reported during vocal babbling in juve-

nile songbirds (Darshan et al., 2017). Low-dimensional correlated

variability has been widely reported in sensory cortex, where it

may carry information about the animal’s behavioral state

(McGinley et al., 2015; Cohen and Maunsell, 2009; Huang et al.,

2019) or movements (Niell and Stryker, 2010; Polack et al.,

2013; Stringer et al., 2019; Musall et al., 2019; Salkoff et al.,

2020). It hasbeenproposed that low-dimensional correlated vari-

ability in sensory cortex may be detrimental to sensory process-

ing, as it may limit a network’s information processing capability

(Moreno-Bote et al., 2014). Here, we found that low-dimensional

correlated fluctuations in amotor area are the crucial mechanism

enabling neuronal sequences to unfold with variable timing. It is

likely that variable timing is an adaptive feature of motor behavior

to avoid predation or competition or to explore the temporal as-

pects of a given behavior independently of the choices of actions.

We speculate that exploration could allow learning of proper

timing by a search in timing space independent of action selec-

tion and vice versa, as may be the case in songbirds (Kao et al.,

2005; Goldberg and Fee, 2011; Darshan et al., 2017). Our results

thus suggest that low-dimensional correlations are essential for

motor generation.

Action timing variability and M2 activity
Here, we provided new evidence suggesting that M2 is involved

in generating self-initiated actions and, crucially, show how vari-

ability in M2 population dynamics could generate the variability

in self-initiated behavior. Our previous studies showed that

most of the variance in waiting times of impatient trials is of sto-

chastic origin, although a small fraction is of deterministic origin

and could be interpreted as a trial history-dependent bias in

waiting times (Murakami et al., 2014, 2017), likely originating

in the prefrontal cortex (PFC). Waiting time itself, however,

was encoded only in M2 activity, not in PFC, consistent with

the parsimonious hypothesis that the stochasticity in waiting

time originates in a circuit that includes M2 itself. These results

thus provide strong evidence for our interpretation that M2 cir-

cuits are directly involved in the decision of which action to plan

and when to act, generating the stochasticity in self-initiated ac-

tion timing. More generally, these results support a combined

PFC-M2-subcortical picture leading to the decision to act:

PFC provides a deterministic choice bias, which is translated

into an actual choice signal by a downstream circuit including

M2, injecting stochastic trial-to-trial variability through a subcor-

tical feedback loop.
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Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the corresponding authors, Zachary

Mainen (zmainen@neuro.fchampalimaud.org) and Luca Mazzucato (lmazzuca@uoregon.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
The code for simulating the network model is available at the following GitHub repository https://github.com/ulisespereira/

sequences-attractors-M2. Data or data analysis scripts are available upon reasonable request from the corresponding authors.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures involving animals were either carried out in accordance with US National Institutes of Health standards and

approved by Cold Spring Harbor Laboratory Institutional Animal Care and Use Committee or in accordance with European Union

Directive 86/609/EEC and approved by Direção-Geral de Veterinária. Experiments were performed on 37 male adult Long-Evans

hooded rats. Rats had free access to food, but water was restricted to the behavioral session and 20�30 additional min per day.

Animals were involved in previous procedures.

Behavioral task
Ratswere trainedon theself-initiatedwaiting task (Figure1A) inabehavioral boxcontainingaWaitport at thecenter andaRewardport at

the side (entry/ exit fromportsweredetectedvia infraredphoto-beam).Rats self-initiateda trial bypoking into theWait port (‘‘Poke In’’). If

the rat stayed in the Wait port for T1 delay (0.4 s), the first tone played (tone 1; 6 or 14 kHz tone), signaling availability of reward in the

Reward port. If the rat waited in the Wait port after tone 1, then tone 2 was played after a T2 delay (14 or 6 kHz, different from tone 1).

If the rat visited the Reward port after tone 2, a large water reward (40 ml) was delivered after a 0.5 s delay (patient trial). If the rat poked

out after tone 1 but before tone 2, and visited the Reward port, a small water reward (10 ml) was delivered after a 0.5 s delay (impatient

trial). The rat had to visit the Reward port within 2 s after the poke out to collect rewards. These trials were referred to as ‘‘correct trials’’;

trialswere theanimalperformeddifferent actionsequencesweredeemed ‘‘incorrect trials.’’ If the rat pokedoutbefore tone1,no rewards

were made available. Re-entrance to the Wait port was discourage with a brief noise burst. T2 delay was drawn from an exponential

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Long-Evans hooded rats. Harlan Le/CpbHsd

Software and algorithms

MATLAB MathWorks MATLAB R2019a

Python version 3.7 Python https://www.python.org/

Custom code for network simulations This paper https://github.com/ulisespereira/

sequences-attractors-M2

MClust-3.5 A. David Radish, University of Minnesota http://redishlab.neuroscience.umn.edu/

MClust/MClust.html

Other

Behavior control system: BControl Carlos D. Brody, Princeton University https://brodylabwiki.princeton.edu/

bcontrol/index.php/Main_Page

Tetrode wire H.P.Reid Polyimide-insulated nichrome 0.0005’’

diameter

NSpike data acquisition system L.M. Frank, University of California, San

Francisco, and J. MacArthur, Harvard

University Electronic Instrument Design Lab

http://nspike.sourceforge.net/
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distribution, with minimum value 0.7 s and mean adjusted to achieve patient trials in one third of the session. After reward delivery, an

inter-trial interval (ITI) started during which white noise played. The time from the Poke In to the ITI endwas held constant, so that the rat

could not increase rewardcollectionby leaving theWait port fastwith thegoal to start thenext trial early. Theoptimal strategywas thus to

alwayswait for tone2. To testwhether neuronal responsesdependedona specific action, 3 ratswere trainedon two variants of the task.

In these experiments, a different behavioral box contained a Reward port, a nose-pokeWait port, and a lever-pressWait port. Blocks of

nose-poke trials and lever-press trialswere interleaved in each session. In the nose-poke block, the rat was to perform the same task as

above. In the lever-press block, task rules were the same but the rat had to wait for the tones by keeping the lever pressed. The wrong

action (nose-poke waiting in the lever-press block and vice versa) was not rewarded and classified as ‘‘incorrect trials.’’ 5 animals were

trained on only the delay variant of the task. 3 animals where trained on both variants (delay and lever). We restricted the statistics of

recordings to sessions where 6 or more neurons were simultaneously recorded. Upon applying such criteria a total of 33 sessions

including 33 delay blocks and 21 lever blocks were analyzed across 8 animals. Each block last for 70-100 trials. Transitions between

the blocks were not signaled. 33 sessions (7 rats) were recorded, see Murakami et al., 2014 for extensive details.

Electrophysiological data
Rats were implanted with a drive containing 10-24 movable tetrodes targeted to the M2 (3.2-4.7 mm anterior to and 1.5-2.0 mm

lateral to Bregma). Electrical signals were amplified and recorded using the NSpike data acquisition system (L.M. Frank, University

of California, San Francisco, and J. MacArthur, Harvard University Electronic Instrument Design Lab). Multiple single units were iso-

lated offline by manually clustering spike features derived from the waveforms of recorded putative units using MCLUST software

(A.D. Redish, University of Minnesota). Tetrode depths were adjusted before or after each recording session in order to sample

an independent population of neurons across sessions. See Murakami et al., 2014 for details.

METHOD DETAILS

Pattern sequence estimation
A Hidden Markov Model (HMM) analysis was used to detect neural pattern sequences from simultaneously recorded activity of

ensemble neurons. Here, we briefly describe the method used and refer to Mazzucato et al., 2015, 2019 for details. According to

the HMM, the network activity is in one ofM hidden ‘‘patterns’’ at each given time. A pattern is a firing rate vector riðmÞ (the ‘‘emission

matrix,’’ Figure 1C), where i = 1;.;N is the neuron index andm= 1;.;M identifies the pattern. In each pattern, neurons discharge as

stationary Poisson processes conditional on the pattern’s firing rates riðmÞ. Stochastic transitions between patterns occur according

to a Markov chain with transition matrix (TPM, Figure 1C) Tmn, whose elements represent the probability of transitioning from pattern

m to n at each given time. We segmented trials in 5 ms bins, and the observation of either yiðtÞ= 1 (spike) or yiðtÞ= 0 (no spike) was

assigned to a bin at time t for the i-th neuron (Bernoulli approximation); if in a given bin more than one neuron fired, a single spike was

randomly assigned to one of the active neurons. A single HMMwas fit to all correct trials per session, yielding emission probilities and

transition probabilities between patterns, optimized via the Baum-Welch algorithmwith a fixed number of hidden patternsM (iterative

maximum likelihood estimate of parameters and latent patterns given the observed spike trains).

The number of patternsM is amodel hyperparameter, optimized using the followingmodel selection procedure (Engel et al., 2016).

In each session, we used K-fold cross-validation (with K = 20) to train an HMM on ðK � 1Þ� folds and estimate the log-likelihood of

the held-out trials LLðMÞ as a function of number of patterns M in the fit (see Figure S2). The held-out LLðMÞ increases with M, until

reaching a plateau. We selected the number of patterns M� for which the incremental increase LLðM + 1Þ � LLðMÞ had the largest

drop (the point of largest curvature) before the plateau (Satopaa et al., 2011). For control, we performed model selection using an

alternative method, the Bayesian Information Criterion (Mazzucato et al., 2019), obtaining comparable results (not shown).

To gain further insight into the structure of the model selection algorithm, we performed a post hoc comparison between the pa-

rameters optimized on the training set for each value ofM (number of patterns), across the cross-validation K-folds. In particular, we

estimated the similarity between the optimized features (emission r
½k1 �
i ðmÞ and transition matrices T

½k1 �
mn ) in the k1-th fold and the k2-th

fold for given M, according to the following congruence Cðk1; k2Þ measure (Tomasi and Bro, 2006):

Cðk1; k2Þ =
 XM

m=1

XN
i =1

br ½k1 �i ðmÞbr ½k2 �i ðmÞ
!
$

 XM
m;n= 1

bT ½k1 �
mn
bT ½k2 �
mn

!
;

where N is the ensemble size, br ½k�i ðmÞ= r
½k�
i ðmÞ=

������ r!½k�ðmÞ
���j2 is the normalized emission for patternm, and bT ½k�

mn is the normalized tran-

sition matrix bT ½k�
mn = T

½k�
mn=
������T ½k�

���j2. Features were matched across folds using the stable matching algorithm (Gale and Shapley, 2013).

If the two folds yielded identical parameters, one would find Cðk1;k2Þ = 1. A congruence above 0.8 signals good quantitative agree-

ment between different folds, whereas congruence below 0.6 suggests a poor similarity among folds (Williams et al., 2018).We calcu-

lated the average congruence across all fold pairs for given M and verified that the number M� of patterns selected with the cross-

validation procedure above corresponded to the elbow in the congruence curve (see Figure S2A). For larger number of patterns,

average congruence typically fell below 0.8.
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The Baum-Welch algorithm only guarantees reaching a local rather than global maximum of the likelihood. Hence, for each ses-

sion, after selecting the number of pattern M� as above, we ran 20 independent HMM fits on the whole session, with random initial

guesses for emission and transition probabilities, and kept the best fit for all subsequent analyses. ThewinningHMMmodel was used

to infer the posterior probabilities of the patterns at each given time pðm; tÞ from the data. Only those patterns with probability

exceeding 80% in at least 50 consecutive mswere retained (henceforth denoted simply as patterns, Figure 1D). This procedure elim-

inates patterns that appear only very transiently and with low probability, also reducing the chance of over-fitting. Pattern dwell time

distributions (Figure 1F) within each session were estimated from the empirical distribution of interval times where a pattern’s prob-

ability was above 80%. Lowering the value of 50ms would extend the distribution of pattern dwell times toward zero (cf. Figure 1F)

reducing the mean of such a distribution, although the characteristic tail and long transitions would remain as a hallmark of the un-

derlying neural processes.

HMM robustness to neural population subsampling
We compared the HMM analysis of the full empirical dataset with two datasets obtained by removing specific neurons in each

session. The two datasets were obtained as follows. For each session we computed the average firing rate for each neuron

across all trials without taking HMM states into account, Figure S4B. Then in one case (first dataset) we removed the neuron

with the highest firing rate and run the HMM analysis again, this is labeled ‘‘high’’ in Figure S4C. In the second case we removed

the neuron with median firing rate and similarly run the HMM analysis, ‘‘median’’ case in Figure S4D. Examples of the outcome of

the HMM fit on the example session excluding respectively the top firing and median firing neuron are shown in Figures S4C and

S4D. The HMM fits to the subsampled statistics were in astounding agreement with the HMM fit to the full population under-

scoring the robustness of the HMM method even for small population sizes. In our statistics the average number of neurons

per session was 9.9 ± 3.3. This robustness was captured by several metrics Figures S4E and S4F. The number of states indi-

viduated selected by the HMM was remarkably similar across all sessions Figure S4E, both concerning the number of states

selected by our crossvalidation procedure and the number of states retained by our selection criteria, cf. STAR Methods 4.3.

Similarly properties related to the sequence of states (i.e., number of states per sequence, average state duraction and fraction

of time for each trial occupied by states with a 80% posterior probability) were all remarkably similar with no significant differ-

ence across all sessions Figure S4F.

Comparison with surrogate datasets
We compared the HMManalysis of the empirical dataset with two surrogate datasets, obtained with the following shuffled procedure

(Figure 2, (Maboudi et al., 2018)). In the ‘‘circular’’ shuffle, each neuron’s binned spike counts were circularly shifted within-trial

randomly (row-wise circular shift), preserving autocorrelations but destroying pairwise correlations. In the ‘‘swap’’ shuffle, packets

of binned population spike counts were randomly permuted in time (column-wise swap), preserving pairwise correlations but

reducing autocorrelations. Each packet consisted of 10 binned spike count vectors amounting to a total time of 50 ms as each

bin was of 5 ms. For comparison of the real dataset with shuffled ones, we adopted the same K-fold cross-validation procedure

as above, where an HMM was fit on training sets and the posterior probabilities pðm; tÞ of patterns were inferred from observations

in the held-out trials (test set).

From the pattern posterior probabilities inferred on held-outs, we estimated several observables for comparison between real and

shuffled datasets. Pattern detection confidence was estimated as the fraction of a trial length where a pattern was detected with high

confidence (pðm; tÞ>80%). Sparseness of transitions was estimated as the average Gini coefficient of TPMs obtained from the K

training sets. The TPM returns the probability for a transition between two patterns to occur (see Pattern sequence estimation), there-

fore a sparser TPM suggests amore robust sequence unfolding.We also estimated the across-trials sequence similarity as follows. In

a trial where patterns were detected above 80% in a certain consecutive order, we compiled a ‘‘symbolic’’ TPM, whose diagonal

element T
ðsymÞ
mm were set equal to the number of non-consecutive occurrences of pattern m, and off-diagonal element T

ðsymÞ
mn was

set equal to the number of n/m transitions observed; finally each row was normalized: T
ðsymÞ
mn /T

ðsymÞ
mn =

PN
l = 1Tml. E.g., the pattern

sequence 1;2;3; 1; 2 is in one-to-one correspondence to the symbolic TPM

sequence ½1;2; 3; 1� 4 T ðsymÞ
mn =

0@ 0:67 0:33 0
0 0:5 0:5
0:5 0 0:5

1A :

Sequence similarity was defined as the trial-averaged Pearson correlation between T ðsymÞ.

In the data, we define the overlaps q between N-dimensional vectors ri and si describing inferred patterns as the correlation

coefficient

q½r; s� = 1

N

XN
i = 1

risi

sðrÞsðsÞ ;

where sðrÞ is the standard deviation of ri.
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Single neuron multistability
To assess how single-neuron activity wasmodulated across different patterns, local (i.e., single-trial) firing rate estimates for neuron i

given a pattern m were obtained from the maximization step of the Baum-Welch algorithm

riðmÞ = � 1

dt
log

 
1�

PT
t =1pðm; tÞyiðtÞPT

t = 1pðm; tÞ

!
; (Equation 3)

where yiðtÞ are the neuron’s observations in the current trial of length T. To determine whether a neuron’s conditional firing rate

distributions differed across patterns (Figure 3C), we performed a non-parametric one-way ANOVA (unbalanced Kruskal-Wallis,

p < 0.05). A post hoc multiple-comparison rank analysis (with Bonferroni correction) revealed the smallest number of signifi-

cantly different firing rate distributions across patterns. Given a p value pmn for the pairwise post hoc comparison between pat-

terns m and n, we considered the symmetric M3M matrix S with elements Smn = 0 if the rates were different (pmn< 0:05= M) and

Smn = 1 otherwise. For example, consider the case of 3 patterns and the following S matrix, where patterns were sorted by

firing rates:

S =

0@ $ 1 0
$ $ 0
$ $ $

1A :

Firing rates of patterns 1 and 2were not significantly different, but they were different from pattern 3 firing rate. Hence, in this case we

classified the neurons as multistable with 2 different firing rates across patterns (Mazzucato et al., 2015).

Tagging pattern onsets to self-initiated actions
The HMM analysis yields a posterior probability distribution pðm; tÞ for the neural pattern m at time t. At any time t we identified

the active pattern m when pðm; tÞR0:8. When this criterion was not met by any pattern then no pattern was assigned, cf. Fig-

ure 1D. The onset time of a specific pattern m was identified as the first time t where pðm; tÞR0:8. Transitions of several pat-

terns appeared in close proximity to specific events (Figure 4A), we thus developed a method to tag pattern onsets to specific

events. Specifically we tagged onset of a given pattern with one of three actions (Poke In, Poke Out, Water Poke In, respec-

tively, for poking in and out of the Wait port and poking in to the Reward port) with the following procedure. For each session

we analyzed all correct trials. We first realigned trials to the specific event recomputing the times of occurrences of all pattern

onsets with respect to the event. In each session we analyzed all transitions to patterns which occurred in at least 70% of

correct trials. This returned a distribution of times T ðmÞ for the onset times of pattern m. If the average of the distribution

mðT ðmÞÞ˛½ � 0:5; 0:1�sec, we tagged the pattern m to the event. When multiple transitions matched our criteria, we selected

the one with minimum inter-quartile iqrðT ðmÞÞ. This procedure returned patterns tagged with specific actions for each trial (cf.

Figure 4C) and tagged one or more patterns in 82% of the sessions. Wherever a pattern was tagged it appeared on average in

90% of the session’s trials. We name pattern onset times ftPI; tPO; tWPIg respectively for the actions Poke In, Poke Out and

Water Poke In.

Decoding actions from pattern onsets
We reversed the pattern tagging procedure to decode actions from pattern onsets. Transitions were tagged to actions using correct

trials (training set) using the procedure above, then actions were decoded from pattern onsets using incorrect trials (test set). The

decoding procedure follows these steps: for every trial, given an action time taction and the tagged pattern onset times te˛ ftPI; tPO;
tWPIg, we classified the action according to

action = argmin
action˛fPI;PO;WPIg

ðtaction � teÞ if ðtaction � teÞ˛½ � 0:5;0:1� sec :

When no patterns passed this criteria the action was not labeled. This procedure labeled 63% of all actions. This procedure labeled

63% of all actions (at least one pattern was tagged to actions in 82% of the sessions). Whenever a pattern was tagged to an action,

the pattern appeared in 90% (on average) of the session’s trials. The tagging procedure was therefore robust, and we believe that it

could significantly improved in future experiments with the availability of larger populations of simultaneously recorded neurons. For

each session and all tagged actions we estimated a confusionmatrix of our decoding procedure (cf. Figure 4C) by comparing the true

actions (rows of the confusion matrix) with their predicted labels (columns of the confusion matrix). The confusion matrix across all

sessions was obtained by averaging confusionmatrices for individual sessions. In order to show, in our analysis, the statistics of non-

classified actions despite tagged states being present in the trial, we performed a second analysis. We limited the statistics of ses-

sions and trials to those where all three actions had corresponding tagged patterns. In such sessions each tagged transition could be

misclassified with a different action or with no action at all. Thus, it was possible to uniformly report the statistics comparing the rela-

tive occurrence of the prediction of an action versus no-action; confusion matrices for these reduced statistics are reported in

Figure S6D.

ll
OPEN ACCESSArticle

Neuron 110, 139–153.e1–e9, January 5, 2022 e4



Noise correlation analysis
To assess trial-to-trial variability in population activity we measured the neural dimensionality of population activity fluctuations

around each pattern. We first estimated the noise covariance CijðmÞ, namely, the covariance conditioned on intervals where pattern

m occurred (the time window with posterior probability R80% in each trial):

CðmÞij =
1

NT

XNT

a

 
rai ðmÞra;Tj ðmÞ�

 
1

NT

XNT

a

rai ðmÞ
! 

1

NT

XNT

a

ra;Tj ðmÞ
!!

; (Equation 4)

where NT is the number of trials in the session and i; j = 1;.;N index neurons. The superscript T denotes vector transposition. In

each trial a and window the average firing rate rai ðmÞ in pattern m was computed from Equation 3. We then computed the dimen-

sionality dðmÞ of population activity fluctuations around pattern m as the participation ratio (Abbott et al., 2011; Mazzucato

et al., 2016):

dðmÞ = Tr½CðmÞ�2

Tr
h
CðmÞ2

i=
�PN

i li

�2
PN

i l
2
i

; (Equation 5)

where li are the eigenvalues of the covariancematrix for i = 1;.;N neurons (Abbott et al., 2011;Mazzucato et al., 2016). Thismeasure

is bounded by the ensemble size N and captures the number of directions, in neural space, across which variability is spread over.

To test the hypothesis that trial-to-trial variability is constrainedwithin a lower dimensional subspace, we proceeded as follows. For

each neural patternm, we considered the first K Principal Components fPC1;.;PCKgm ofCðmÞ in Equation 4, where K is the integer

minor or equal to the average of dðmÞ across the M patterns within each session: K = floor

 
1
M

PM
m= 1PRm

!
. This represents the

across-patterns average dimensionality of noise correlations within a session. Using a Canonical Correlation Analysis we then esti-

mated the canonical variables between fPC1;.;PCKgm1
and fPC1;.;PCKgm2

for pairs of patternsm1 andm2, obtaining the respec-

tive correlation coefficients rj between the K canonical variables, j˛f1::Kg. Alignment Aðm1;m2Þ was then defined as the average

correlation coefficient between the canonical variables Aðm1;m2Þ = 1
K

PN
j =Krj, cf. Figure 6B. To compute the shuffled statistics for

Figure 6 and similar, we proceeded as follows. In the case of the dimensionality (Figure 6A) we created random ensambles of pattern

activities by shuffling (using random permutations) neural activities within a session across all patterns and neurons. In the case of the

of the pattern alignment (Figure 6B) we computed the shuffled statistics by computing canonical correlation coefficients not between

top principal components of two patterns (as many as individuated by the average dimensionality described above in each session)

but rather between random principal components directions. In such a way the plots highlight how top principal components of

pattern correlations are aligned between two patterns against the null hypothesis of random alignment between any two principal

components of the same patterns.

Firing rate modulations by stimuli and conditions
Single cell responses to tones

To estimate single neuron responses to the tone we performed a t test for responses of individual neurons before and after the two

tones from the spike count vector, across trials, before and after the sensory stimulus in a window of 50 ms. We retained only trials

where no other event (e.g., Poke Out) was present within a 100 ms window from the onset of the stimulus.

Decoding of condition

We sought to decode patient versus impatient trials from the time course of neural activity. We started by computing spike count

vectors binning spikes of neural activity through a non-overlapping moving window of 50 ms. In each trial we considered the neural

activity from 1 s before Poke In until 1.5 s after Water Poke In. We then labeled each spike count vector respectively as ‘‘patient’’ or

‘‘impatient’’ if they belonged to a trial where the animal displayed the corresponding behavior. Finally we used a neural classifier

(linear or SVM) trained on all spike count vectors (Figure S6F). In the SVM case several kernels yielded similar results, displayed

are results for a Gaussian kernel.

GPFA fit to neural data
A Gaussian Process Factor Analysis (GPFA (Byron et al., 2008)) represents a continuous latent space model where hidden factors

underlying the dynamics smoothly unfold through time giving rise to neural activity. GPFA posits that population activity is generated

by an underlying continuous and low dimensional Gaussian process. By its nature, the GPFA aims to fit a continuous latent trajectory

to population activity, as opposed to the HMM’s discrete nature of sudden transitions between long-dwelling states. Although this

hypothesis may theoretically provide an alternative explanation for our results, we discovered that the time course of the GPFA latent

factors closely matched the HMM discrete pattern sequences.

The number of latent variablesNfactors for each session was identified bymeans of a 3-fold crossvalidation procedure and selected

by means of choosing the point of maximum curvature in the crossvalidation curve, identically to the criterion used to identify the

number of HMM states. Here we used the knee locator algorithm described in (Satopaa et al., 2011) with sensitivity parameter
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s = 1. Once the number of latent variables was assessed for each session, aGPFAmodel with the corresponding number of variables

was fit.

The application of the GPFA method resulted in a time series for each of the Nfactors in each trial which were underlying neural

dynamics. These time series are displayed in Figure S5A for the example session considered in Figures 1B–1E. To aid visual-

ization, for each factor (in each of the top 5 panels) we time warped the temporal dynamics in each trial to visualize it across all

trials of the session. The characteristic trend of latent factors in this session shows how the onset of different actions is char-

acterized by strong modulations of a subset of latent factors, capturing sudden changes in the neural dynamics they fit. This

hints to a discrete rather than continuous feature of the latent space underlying neural dynamics. We visualized the trajectory

of latent factors in their PC space Figure S5B confirming a similar signature. The marginal distribution of PC 1 and PC 2 are

shown in the plots at margin.

Network model
In this section we describe the correlated variability model generating reliable sequences of metastable attractors (see Equation 1),

whose dynamics is ruled by the current-based formulation of the standard rate model (Grossberg, 1969; Miller and Fumar-

ola, 2012):

t _uiðtÞ = � uiðtÞ+
XN
j = 1

JSij fjðujðtÞÞ+ zðtÞ
XN
j = 1

JFij fjðujðtÞÞ : (Equation 6)

The firing rates are analog positive variables given by the transformation of synaptic currents to rates by the input-output transfer

function fiðuiÞ. Transfer functions fi were inferred from the empirical firing rate distribution of M2 single neurons (see Inferring the

transfer function from data). The parameter t corresponds to the single neuron time constant. We set the M2 symmetric connectivity

to be sparse (Mason et al., 1991; Markram et al., 1997; Holmgren et al., 2003; Thomson and Lamy, 2007; Lefort et al., 2009). Our

connectivity consists of two terms, traditionally referred to as the symmetric term JSij and the asymmetric term JFij (Domany et al.,

1995). The symmetric term reads

JSij =
cijAS

Nc

Xp
m= 1

f
�
h
m

i

�
g
h
h
m

j

i
; (Equation 7)

where the variable cij represents the structural connectivity of the M2 local circuit, modeled as an Erdos-Renyi graph where cij = 1

with probability c. The normalization constant Nc corresponds to the average number of connections to a neuron; AS is the overall

strength of the symmetric term.

For any nonzero synaptic connection (i.e., cij = 1), the strength of the synaptic weight is given by AS

Nc

Pp
m= 1f ½h

m
i �g½h

m
j �. The variables h

m
i

are distributed as hmi e�fðzmi Þ, where zmi are normally distributed, i.e., zmi e�Nð0; 1Þ. The functions f and g are given by the step functions

fðhÞ =
�
qf if xf%h

�ð1� qfÞ if h%xf
; gðhÞ=

�
qg if xg%h

�
�
1� qg

	
if h%xg

(Equation 8)

Therefore, the pair of binary random patterns f ½hmi � and g½hmi � are correlated. We assume that CgD = 0, which constrains one of the two

parameters of g. This constrain does not apply to f (i.e., CfD = 0), and in our model the function f is biased toward inhibition (i.e., CfD< 0).

While JSij is symmetric only if f = g, we choose to keep the terminology ‘symmetric’ for this term for consistency with early work in

networks of binary neurons (Sompolinsky and Kanter, 1986; Kleinfeld, 1986; Herz et al., 1989; Domany et al., 1995).

The correlated variability term zðtÞ
PN

j =1J
F
ij fðujðtÞÞ in Equation 6 is comprised by the asymmetric matrix JFij which is is given by

JFij =
1

N

Xp
m= 1

f
�
h
m+ 1
i

	
g
�
h
m

j

�
; (Equation 9)

where the rank p of the matrix JFij is much lower than the number of neurons N in the network. Hence, this term induces low-dimen-

sional correlated fluctuations across neurons, driven by the Ornstein-Uhlenbeck process zðtÞ given by

tz _zðtÞ = � zðtÞ+ z+
ffiffiffiffiffiffiffiffiffiffiffiffi
2s2

ztz

q
xðtÞ ; (Equation 10)

where tz, z and s2z are the timescale, mean and variance of the process, respectively. For a derivation of these parameters see the

next section.

In Correlated variability is necessary to explain temporal variability in attractor networks, we compared the correlated variability

model (see Equation 6) to a private noise model

t _uiðtÞ = � uiðtÞ+
XN
j = 1

JSij fjðujðtÞÞ+ z
XN
j = 1

JFij fjðujðtÞÞ+
ffiffiffiffiffiffiffiffiffiffi
2s2

pt
q

ciðtÞ ; (Equation 11)
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where term
ffiffiffiffiffiffiffiffiffiffi
2s2pt

q
ciðtÞ is additive white Gaussian noise with mean zero and variance sp representing private noise, independently

drawn for each neuron. Here, the asymmetric part of the synaptic couplings is constant, proportional to the parameter z, unlike the

time varying asymmetric term in Equation 6.

As a measure of the pattern retrieval (Figure 5), we used overlaps, defined as the Pearson correlation between the instantaneous

firing rate and the nonlinear transformation of a given pattern g½ h!l� (Pereira and Brunel, 2018; Gillett et al., 2020)

mlðtÞ =
Cov½g½ h!l� r!ðtÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Varðg½ h!l�ÞVarð r!ðtÞÞ
q : (Equation 12)

Two-area mesoscale model
In this section, we show how to obtain the network model in Equation 1, starting from the two-area network in Correlated variability

originates in a mesoscale feedback loop, whose dynamics is governed by

t _uiðtÞ = � uiðtÞ+
XN
j = 1

JSij fjðujðtÞÞ+
XNY

j =1

WM2)Y
ij rYj (Equation 13)

tY _r
Y
i = � rYi +

XN
j = 1

WY)M2
ij fjðujÞ :

In Figure 5E a schematic of the two-area networkmodel is shown. The first equation describes the dynamics ofN neurons in areaM2,

with the notations as in Equation 6. The second term represents the firing rates rYi ofNY neurons in area Y, where we assumeNY �N.

We approximate area Y dynamics as linear. The projectionsWY)M2
ij from M2 to area Y are structured similarly as M2 recurrent con-

nections in Equation 7, i.e.,

WY)M2
ij =

AY)M2

N

Xp�1

m= 1

f
�
ymi
	
g
�
h
m

j

�
; (Equation 14)

although there are two important differences. First, since the number of neurons in M2 and area Y are N and NY respectively, then

WY)M2
ij is a rectangular matrix with dimensions NY3N. Second, projections from Y to M2 are dense. The right vectors in the outer

product inside the sum in Equation 14, gðhmÞ, are the same vectors as the right vectors in the Equation 7. The left vectors in the outer

product gðymi Þ are different than gðhmÞ, but have the same statistics than h
m
i , i.e., y

m
i e�fðzmi Þ, where zmi are normally distributed

zmi e�Nð0;1Þ. Therefore, whenM2 activity is in the mth attractor, since the mth overlap is order one, the activity is mostly projected along

the gðymi Þ direction in area Y. The parameter AY)M2 corresponds to the overall strength of the M2/Y projections.

We assume the activity of area Y is fast with respect to M2 (tY � t), replacing the second dynamical equation in Equation 13 by its

steady state

rYi =
XN
j = 1

WY)M2
ij fðujÞ : (Equation 15)

Similarly to the M2/Y projections, the feedback projections Y/M2 are given by

WM2)Y
ij = sM2)Y

ij ðtÞAM2)Y

NY

Xp�1

m= 1

f
�
h
m+ 1
i

	
g
�
ymj

�
: (Equation 16)

The variable sM2)Y
ij ðtÞ represents the synaptic efficacies from Y to M2, which in our model fluctuate in time. The parameter AM2)Y

corresponds to the overall strength of the Y/M2 projections. Fluctuations in the synaptic efficacy are pervasive. They can be the

product of several different cellular mechanisms as for example short term depression (Tsodyks and Markram, 1997) or variability

in the synaptic vesicle release (Dobrunz and Stevens, 1997). In this work, we consider a simple model for capturing the temporal fluc-

tuations in the synaptic efficacy given by a noisy linear dynamics below

_s
M2)Y
ij =

1� sM2)Y
ij ðtÞ
ts

+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sM2)Y

ts

s
xM2)Y
j ðtÞ: (Equation 17)

Here ts corresponds to the time-scale of the fluctuations in the synaptic efficacy, s2M2)Y is the variance of these fluctuations, and

xM2)Y
j ðtÞ is a Gaussian random variable with mean zero and variance one. In our model, changes on synaptic efficacy of the Y/ M2

projections depend on fluctuations of pre-synaptic neurons in area Y given by the variable xM2)Y
j ðtÞ.

The input current to M2 due to the feedback loop between M2 and area Y is approximately
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XNY

l = 1

WY/M2
il rYl =

XN
j = 1

XNY

l = 1

WM2)Y
il WY)M2

lj fðujÞ (Equation 18)

=
1

N

�
z +

spffiffiffiffiffiffi
NY

p uðtÞ
�XN

j = 1

Xp
m= 1

f
�
h
m+ 1
i

	
g
�
h
m

j

�
fðujÞ:

Here, we used the fact that 1
NY

PNY

l =1fðy
m
l Þgðy

m0

l ÞsM2)Y
il ðtÞ has mean zdm;m0 and finite variance s2, when averaged over an ensemble

of C/Dy;xðtÞ of patterns y and fluctuations of the synaptic efficacies xðtÞ in Equation 17. The variable uðtÞ represents the normalized

fluctuations with mean zero and unit variance, and a finite autocovariance time-scale. Therefore, the matrix JFij in Equation 1 corre-

sponds to the effective connectivity arising from the feedback loop between M2 and area Y given by

JFij =
zðtÞ
N

Xp
m= 1

f
�
h
m+ 1
i

	
g
�
h
m

j

�
; (Equation 19)

which has rank p � N. Assuming p � Oð
ffiffiffiffiffiffiffi
NY

p
Þ � N, the fluctuations in Equation 18 are order 1. We account for both the strength and

the variability in the M2/Y and Y/M2 projections, via the Ornstein-Uhlenbeck process zðtÞ in Equation 10. Notice that tz is the

effective time-scale of the temporal fluctuations in the sum over Y neurons in Equation 18. Its mean z and variance s2z control, respec-

tively, the strength and the variability of the effective asymmetric couplings obtained after integrating out the dynamics in area Y. The

variance s2z is inversely proportional to the size of the neural population in area Y. Network simulations of our two-area model confirm

our mathematical results (see Figure 5F).

Inferring the transfer function from data
For inferring the input-output transfer function from in vivo recordings we adapted a method proposed in (Lim et al., 2015) to our hid-

den Markov model analysis. Briefly, for each session, the empirical distribution of mean firing rates across patterns and neurons is

constructed. As in (Lim et al., 2015), we assumed normally distributed synaptic input currents. By rank-matching the firing rates to a

standardized normal distribution we obtained the empirical current-to-rate transfer function (see Figure S7). Similarly to (Pereira and

Brunel, 2018), for each recorded unit we fit this curve with a sigmoidal function

fðuÞ = R0

1+ e�bðu�h0Þ
: (Equation 20)

If input currents produced firing rates in Equation 20 larger than a neuron’s maximal firing rate Rmax, then the correspding firing rates

were set to Rmax. Using the above procedure we inferred a distribution of parameters fðRðiÞ
max;R

ðiÞ
0 ;bðiÞ;h

ðiÞ
0 Þg

328

i = 1
, one from each re-

corded unit (Figure 5A). For conveying the diversity in the transfer functions inferred from data, in our model we randomly sampled

with replacement 10000 samples from the parameter distribution above.

Network simulations
For the network simulations of the correlated variability model in Figs. Figures 5 and 6, the parameter values used are listed in

Table 1. The number of sessions and trials per session are matched to those in the empirical data. The number of attractors in

each session, e.g., p (see Equation 7) are taken to be the same as the number of patterns inferred in each empirical session

using the HMM. An attractor was detected in the model when the overlap between network activity and the attractor is larger

than 0.4.

For the network simulations of the private noise model in Figures S7C and S7D the parameter are the same as in Table Table 1

except AS = 1, sz = 0, and sp = 0:2. An attractor was detected in the model when the overlap between network activity and the at-

tractor is larger than 0.2.

The simulations where performed using custom Python scripts.

HMM fit to network model simulations
To verify our framework and the properties of our model, we fit a HMM model to the network simulations of the model and recom-

puted the same plots of Figures 5 and 6 reported in Figure S9. Neural activities in the model are of a continuous nature (rate based

simulations) therefore we fit a Gaussian HMM as follows. We run simulations of the model by matching the statistical properties of

empirical data (see previous section). For each simulated sessionwe sampled a number of neurons equal to the one in the recordings.

We then convolved neural activities with aGaussian filter of short duration (sd 60ms).We experienced this to be necessary to obtain a

reliable convergence of the HMM.We selected the number of states in the model and fit the simulated neural population activities for

each session with the HMM by means of a expectation-maximization algorithm. This fit returned the identity of the state generating

the neural activity. On these statistics we then run the analysis of Figures 5 and 6 to obtain the metrics shown in Figure S9.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Data analysis was performed with custom-written software using MATLAB (Mathworks) and Python. No statistical methods were

used to pre-determine sample sizes, but sample sizes were similar to previous studies (Erlich et al., 2011; Guo et al., 2014). All sum-

mary statistics are mean ± SD across 33 sessions, unless otherwise stated.
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